Split Scores: A Tool to Quantify Phylogenetic Signal in Genome-Scale Data.
نویسندگان
چکیده
Detecting variation in the evolutionary process along chromosomes is increasingly important as whole-genome data become more widely available. For example, factors such as incomplete lineage sorting, horizontal gene transfer, and chromosomal inversion are expected to result in changes in the underlying gene trees along a chromosome, while changes in selective pressure and mutational rates for different genomic regions may lead to shifts in the underlying mutational process. We propose the split score as a general method for quantifying support for a particular phylogenetic relationship within a genomic data set. Because the split score is based on algebraic properties of a matrix of site pattern frequencies, it can be rapidly computed, even for data sets that are large in the number of taxa and/or in the length of the alignment, providing an advantage over other methods (e.g., maximum likelihood) that are often used to assess such support. Using simulation, we explore the properties of the split score, including its dependence on sequence length, branch length, size of a split and its ability to detect true splits in the underlying tree. Using a sliding window analysis, we show that split scores can be used to detect changes in the underlying evolutionary process for genome-scale data from primates, mosquitoes, and viruses in a computationally efficient manner. Computation of the split score has been implemented in the software package SplitSup.
منابع مشابه
Quartet-based computations of internode certainty provide accurate and robust measures of phylogenetic incongruence
Incongruence, or topological conflict, is prevalent in genome-scale data sets but relatively few measures have been developed to quantify it. Internode Certainty (IC) and related measures were recently introduced to explicitly quantify the level of incongruence of a given internode (or internal branch) among a set of phylogenetic trees and complement regular branch support statistics in assessi...
متن کاملModels and Algorithms for Whole-Genome Evolution and their Use in Phylogenetic Inference
The rapid accumulation of sequenced genomes offers the chance to resolve longstanding questions about the evolutionary histories, or phylogenies, of groups of organisms. The relatively rare occurrence of large-scale evolutionary events in a whole genome, events such as genome rearrangements, duplications and losses, enables us to extract a strong and robust phylogenetic signal from whole-genome...
متن کاملComparison of Phylogenetic and Evolutionary of Nucleotide Squences of HVR1 region of Mitochondria genom in Goats and Other Livestock Species
Maintaining genomic diversity in goat populations in different parts of Iran is essential for breeding programs, increasing production, survival, resistance to diseases, and various environmental changing conditions. The aim of the present study was to determine the sequence of HVR1 from the mitochondrial genome of Iranian native goats including Sistani, Pakistani, Black and Lorry ecotypes...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملUpdate on HCV genotypes among Iranian blood donors
Abstract Background and Objectives Hepatitis C (HCV) infection is one of the main causes of chronic hepatitis diseases all over the world. HCV is a transfusion transmitted virus and a serious threat to general health. HCV genotyping has an important role in tracing routes of infection. This study aimed at investigating the changes in distribution pattern of HCV genotypes among Iranian blood d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Systematic biology
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2017